3.584 \(\int \frac{\sqrt{\cos (c+d x)}}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=53 \[ \frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b d (a+b)} \]

[Out]

(2*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.100765, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {2803, 2641, 2805} \[ \frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b d (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x]),x]

[Out]

(2*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d)

Rule 2803

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)}}{a+b \cos (c+d x)} \, dx &=\frac{\int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{b}-\frac{a \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b}\\ &=\frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b (a+b) d}\\ \end{align*}

Mathematica [A]  time = 0.0681823, size = 48, normalized size = 0.91 \[ \frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x]),x]

[Out]

(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b))/(b*d)

________________________________________________________________________________________

Maple [A]  time = 2.827, size = 188, normalized size = 3.6 \begin{align*} -2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{b \left ( a-b \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a-{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) b-a{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b-a*EllipticPi(cos(
1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/b/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1
/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)